
 WRF-Comfort:  Simulating  micro-scale  variability  of  outdoor  heat 
 stress at the city scale with a mesoscale model 
 Alberto  Martilli  1  ,  Negin  Nazarian  2,3  ,  E.  Scott  Krayenhoff  4  ,  Jacob  Lachapelle  4  ,  Jiachen  Lu  2,3  ,  Esther 
 Rivas  1  , Alejandro Rodriguez-Sanchez  1  , Beatriz Sanchez  1  ,  Jose Luis Santiago  1 

 1  Atmsopheric Modelling Unit, Environmental Department,  CIEMAT, Madrid, 28040, Spain 
 2  School of Built Environment, University of New South  Wales, Sydney, Australia 
 3  ARC Centre of Excellence for Climate Extremes, Australia 
 4  School of Environmental Sciences, University of Guelph,  Guelph, Canada 

 Correspondence to  : Alberto Martilli (alberto.martilli@ciemat.es) 

 Abstract.  Urban  overheating,  and  its  ongoing  exacerbation  due  to  global  warming  and  urban  development,  leads  to 

 increased  exposure  to  urban  heat  and  increased  thermal  discomfort  and  heat  stress.  To  quantify  thermal  stress,  specific 

 indices  have  been  proposed  that  depend  on  air  temperature,  mean  radiant  temperature  (MRT),  wind  speed,  and  relative 

 humidity.  While  temperature  and  humidity  vary  on  scales  of  hundreds  of  meters,  MRT  and  wind  speed  are  strongly  affected 

 by  individual  buildings  and  trees,  and  vary  at  the  meter  scale.  Therefore,  most  numerical  thermal  comfort  studies  apply 

 micro-scale  models  to  limited  spatial  domains  (commonly  representing  urban  neighborhoods  with  building  blocks)  with 

 resolutions  on  the  order  of  1  m  and  a  few  hours  of  simulation.  This  prevents  the  analysis  of  the  impact  of  city-scale 

 adaptation/mitigation  strategies  on  thermal  stress  and  comfort.  To  solve  this  problem,  we  develop  a  methodology  to  estimate 

 thermal  stress  indicators  and  their  subgrid  variability  in  mesoscale  models  -  here  applied  to  the  multilayer  urban  canopy 

 parametrization  BEP-BEM  within  the  WRF  model.  The  new  scheme  (consisting  of  three  main  steps)  can  readily  assess 

 intra-neighborhood  scale  heat  stress  distributions  across  whole  cities  and  for  time  scales  of  minutes  to  years.  The  first  key 

 component  of  the  approach  is  the  estimation  of  MRT  in  several  locations  within  streets  for  different  street  orientations. 

 Second,  mean  wind  speed,  and  its  subgrid  variability,  are  parameterized  as  a  function  of  the  local  urban  morphology  based 

 on  relations  derived  from  a  set  of  microscale  LES  and  RANS  simulations  across  a  wide  range  of  realistic  and  idealized  urban 

 morphologies.  Lastly,  we  compute  the  distributions  of  two  thermal  stress  indices  for  each  grid  square  combining  all  the 

 subgrid  values  of  MRT,  wind  speed,  air  temperature,  and  absolute  humidity.  From  these  distributions,  we  quantify  the  high 

 and  low  tails  of  the  heat  stress  distribution  in  each  grid  square  across  the  city,  representing  the  thermal  diversity  experienced 

 in  street  canyons.  In  this  contribution,  we  present  the  core  methodology  as  well  as  simulation  results  for  Madrid  (Spain), 

 which  illustrate  strong  differences  between  heat  stress  indices  and  common  heat  metrics  like  air  or  surface  temperature,  both 

 across the city and over the diurnal cycle. 
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 1 Introduction 

 The  combination  of  urban  development  and  climate  change  has  increased  heat  exposure  in  cities  in  recent  decades  (Tuholske 

 et  al.,  2021)  and  a  continuation  of  these  trends  in  the  21st  century  would  be  difficult  to  offset  locally  from  an  air  temperature 

 perspective  (Broadbent  et  al.,  2020;  Krayenhoff  et  al.,  2018;  Zhao  et  al.,  2021)  .  Adaptation  options  that  target  contributions 

 to  heat  exposure  other  than  the  air  temperature,  such  as  radiation  (e.g.,  via  shade)  and  wind  (e.g.  via  improved  street 

 ventilation),  should  therefore  be  considered.  Quantification  of  these  contributions  relative  to  air  temperature  requires  the 

 application  of  comprehensive  thermo-physiological  heat  stress  metrics  such  as  the  Universal  Thermal  Climate  Index,  UTCI 

 (Jendritzky  et  al.,  2012)  ,  the  Physiological  Equivalent  Temperature,  PET  (Höppe,  1999)  ,  or  the  Standard  Effective 

 Temperature,  SET  (Gagge  et  al.,  1986)  .  Moreover,  exposure  to  heat  hazards  is  moderated  by  infrastructure-based  and 

 social/mobility-based  adaptations  to  heat,  and  by  buildings  and  associated  cooling  mechanisms.  Here,  the  focus  is  the 

 development  of  a  tool  to  quantify  the  outdoor  component  of  heat  exposure  in  cities,  accounting  for  all  relevant 

 meteorological variables. 

 Heat  exposure  in  urban  areas  is  affected  by  several  meteorological  variables  that  vary  on  different  spatial  and  temporal  scales 

 (Nazarian  et  al.,  2022)  .  While  temperature  and  humidity  vary  on  spatial  scales  on  the  order  of  hundreds  of  meters,  shortwave 

 and  longwave  radiation  and  wind  speed  are  strongly  affected  by  individual  buildings  and  vary  at  the  scale  of  a  few  meters. 

 For  this  reason,  most  numerical  thermal  comfort  studies  in  urban  areas  apply  micro-scale  models  with  resolutions  on  the 

 order  of  1  m  and  spatial  domains  that  are  limited  to  an  urban  block  or  neighborhood  (Nazarian  et  al.,  2017;  Zhang  et  al., 

 2022;  Geletič  et  al.,  2018)  .  While  these  studies  include  substantial  detail  at  the  micro-scale,  they  are  very  expensive 

 computationally  and  therefore  can  be  applied  only  to  a  few  neighborhoods  and  they  neglect  the  interactions  with  larger  scale 

 meteorological  phenomena  (e.g.,  land/sea  breezes,  mountain/valley  winds,  urban  breezes)  that  often  play  a  relevant  role  in 

 outdoor  thermal  comfort  and  its  variation  across  cities.  On  the  other  hand,  contemporary  meso-scale  numerical  models  can 

 be  applied  to  the  whole  urban  area  and  surrounding  regions,  and  therefore  capture  these  larger-scale  phenomena,  but  have 

 spatial  resolutions  of  several  hundred  meters  at  best.  These  models  use  a  grid  mesh  that  does  not  resolve  buildings  and  is 

 therefore  too  coarse  to  capture  the  fine-scale  variation  of  radiation  and  wind  flow  of  relevance  to  outdoor  heat  exposure  and 

 ultimately thermal comfort. 

 The  objective  of  this  work  is  to  fill  the  aforementioned  gap  by  developing  a  model  that  includes  the  most  crucial  capabilities 

 of  micro-scale  assessments  of  thermal  exposure  within  meso-scale  models.  This  new  model  will  quantify  the  spatial 

 variability  (i.e.,  statistical  representation  of  the  microscale  distribution)  for  longwave  and  shortwave  radiation  as  well  as 

 wind  speed  within  each  meso-scale  grid  square.  Subsequently,  it  will  capture  the  range  of  thermal  exposure,  as  quantified  by 

 the  UTCI  and  SET  thermal  stress  metrics,  within  each  urban  grid  square  across  a  city  at  each  time  of  day.  The  focus  here  is 

 on  the  range  of  thermal  exposure,  such  that  we  identify  the  cool  and  hot  spots  within  the  grid  cell  without  having  to  resolve 

 the  entire  spatial  distribution.  We  argue  that  this  represents  the  most  crucial  information  for  heat  management  and  urban 

 design  interventions,  as  it  identifies  whether  people  can  move  and  search  for  optimal  thermal  conditions.  For  example,  if  hot 
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 spots  are  experiencing  extreme  heat  stress  but  the  cool  spots  are  at  slight  heat  stress,  pedestrians  have  the  opportunity,  and 

 autonomy,  to  seek  shade  and  thermal  respite  (i.e.,  spatial  autonomy  as  described  in  Nazarian  et  al.  (2019)  ).  Conversely,  if  the 

 conditions  in  the  cool  spot  are  already  in  extreme  heat  stress,  this  can  be  used  to  inform  urban  design  interventions  or  heat 

 advisories  to  vulnerable  populations  to  avoid  being  outside  at  that  place  and  time.  Overall,  representing  the  range  of  heat 

 exposure  at  the  neighborhood  scale  while  covering  regional-scale  phenomena  is  key  to  human-centric  assessments  of  urban 

 overheating  (Nazarian et al., 2022)  . 

 The  new  model  is  embedded  in  the  multi-layer  urban  canopy  parameterization  BEP-BEM  (Martilli  et  al.,  2002;  Salamanca  et 

 al.,  2010)  which  simulates  the  local-scale  meteorological  effects  of  the  grid  average  urban  morphology  within  the  Weather 

 Research  and  Forecasting  (WRF)  mesoscale  model  (Skamarock  et  al.,  2019  version  4.3  has  been  used  in  this  study)  .  Here, 

 BEP-BEM  is  extended  to  quantify  the  spatial  variation  of  the  mean  radiant  temperature  and  wind  speed  within  the  grid 

 square  at  the  pedestrian  level.  To  our  knowledge,  three  schemes  in  the  published  literature  have  attempted  to  capture  thermal 

 exposure  in  an  urban  canopy  model.  Pigliautile  (2020)  implemented  a  scheme  to  estimate  human  thermal  exposure  in  the 

 Princeton  Single-Layer  Urban  Canopy  Model.  However,  the  scheme  has  not  been  run  within  a  mesoscale  model.  Jin  et  al. 

 (2022)  calculate  urban  mean  radiant  temperature  (MRT)  in  a  mesoscale  model,  while  Lemonsu  (2015)  and  Leroyer  et  al. 

 (2018)  assess  UTCI  in  mesoscale  modeling  applications  within  Paris  and  Toronto,  respectively.  Moreover,  Giannaros  et  al 

 (2018,  2023),  made  an  offline  coupling  of  WRF-BEP_BEM  with  RayMan  (Matzarakis  et  al.  2007).  However,  none  of  these 

 approaches  account  for  the  within-grid  spatial  variation  of  wind  speed,  and  their  assessment  of  sub-grid  spatial  variation  of 

 radiation  exposure  (i.e.,  mean  radiant  temperature)  is  limited.  Here,  we  further  extend  the  BEP-BEM  model  embedded  in  the 

 WRF  meso-scale  model  to  overcome  these  limitations  and  more  fully  assess  spatial  variation  of  thermal  exposure  within 

 each urban grid square. 

 In  section  2,  the  methodology  is  described  in  detail,  with  a  focus  on  model  development  and  implementation  in  WRF.  In 

 Section 3, we present an example of the type of outputs that can be produced. Conclusions are in section 4. 

 2 Methodology 

 The  most  complete  thermal  stress  indices  invariably  depend  on  four  meteorological  variables:  air  temperature,  mean  radiant 

 temperature  (MRT),  relative  humidity,  and  wind  speed.  Among  these,  MRT  and  wind  speed  have  the  largest  spatial 

 variability  in  the  urban  canopy,  and  this  variability  is  often  captured  with  3D  micro-scale  models  of  urban  airflow  and 

 radiative  heat  transfer.  At  the  meso-scale,  however,  it  is  not  feasible  to  incorporate  such  models,  motivating  the  simplified 

 urban  canopy  parameterizations  developed  here.  Below  we  detail  how  the  BEP-BEM  urban  canopy  model  is  modified  to  a) 

 introduce  a  simplified  model  for  MRT  variation  within  a  meso-scale  grid  cell  (Sec.  2.1)  and  b)  parameterize  airflow 

 variability  (Sec.  2.2)  in  the  urban  canopy  within  a  grid  cell,  and  make  a  simple  estimate  of  air  temperature  variability.  These 

 meteorological  parameters  are  then  used  to  estimate  the  sub-grid  scale  variation  of  thermal  stress  indices  (Sec.  2.3),  namely 
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 SET  and  UTCI,  as  two  of  the  most  commonly  used  indices  for  outdoor  environments  (Potchter  et  al  2018).  Lastly,  we 

 discuss  how  multi-scale  temporal  and  spatial  variabilities  in  thermal  exposure  can  be  effectively  communicated  using  the 

 outcomes of the updated WRF-BEP-BEM model. 

 2.1  A simplified model for MRT variability in the urban canopy 

 The  mean  radiant  temperature  is  a  measure  of  the  total  radiation  flux  absorbed  by  the  human  body,  including  both  shortwave 

 (from  the  sun,  either  directly  or  after  reflection  on  the  walls  or  road)  and  longwave  (emitted  from  solid  bodies  like  walls  or 

 road,  or  from  the  sky)  radiation.  Whether  pedestrians  are  shaded  or  in  the  sunshine,  as  well  as  their  distance  from  warm 

 surfaces  emitting  radiation,  is  therefore  very  important.  BEP-BEM  applies  a  simple  urban  morphology:  two  street  canyons  of 

 different  orientations,  each  with  the  same  street  width  and  building  height  distribution  on  each  side  of  the  canyon  (Martilli  et 

 al.  2002).  To  capture  the  within-grid  spatial  extremes  of  mean  radiant  temperature,  we  assess  pedestrian  locations  at  the 

 center  of  the  street  for  two  canyon  orientations  considered  in  BEP-BEM  and  at  positions  located  at  a  distance  of  1.5  m  from 

 the  building  wall  on  each  side  of  the  street,  representing  the  sidewalks.  Thus,  there  are  6  positions  (three  for  each  street 

 direction)  in  each  urban  grid  square  where  we  compute  the  mean  radiant  temperature  (shown  for  the  example  of  North-South 

 and  East-West  streets  in  Fig.  1).  For  shortwave  reflection  and  longwave  emission  and  reflection,  the  standard  BEP  view 

 factor  and  shading  routines  (Martilli  et  al.  2002)  are  used  to  estimate  the  amount  of  shortwave  (direct  and  diffuse)  and 

 longwave  radiation  reaching  a  vertical  segment  1.80  m  tall  and  located  in  each  of  the  six  positions  previously  mentioned 

 (Fig.  1).  Reflection  of  shortwave  radiation  and  emission  and  reflection  of  longwave  radiation  from  both  building  walls  and 

 the  street  surface  are  accounted  for  via  these  view  factors.  The  pedestrian  is  “transparent”  from  the  perspective  of  the  urban 

 facets,  meaning  that  its  presence  does  not  alter  the  shortwave  and  longwave  radiation  reaching  the  building  walls  and  road. 

 The  mean  radiant  temperature  is  computed  by  weighting  the  radiation  reaching  each  side  of  the  vertical  segment  by  0.44,  and 

 the  radiation  reaching  the  downward-  and  upward-facing  (at  1.80  m  height)  surfaces  of  the  pedestrian  by  0.06  each.  This 

 approach  follows  the  six-directional  weighting  method  (Thorsson  et  al.  2007)  and  aggregates  the  four  lateral  weightings  of 

 0.22  into  two  lateral  weightings  of  0.44  since  BEP-BEM  is  a  two-dimensional  model  (e.  g.  the  streets  are  considered 

 infinitely long). Namely, 

 (1) 

 where,  for  an  N-S  oriented  street,  i=1,2  are  for  the  vertical  sides  of  the  pedestrian  looking  East,  and  West  respectively,  and 

 i=3,4  are  for  the  top  and  bottom.  Therefore,  W  1,2  =0.44,  while  W  3,4  =0.06,  a  K  =0.7,  and  a  L  =0.97,  K  1,2  and  L  1,2  are  the  short  and 

 longwave  radiation  reaching  the  vertical  segment,  and  K  3,4  and  L  3,4  are  short  and  longwave  radiation  reaching  the  top  and 

 bottom respectively, and  σ  is the Stefan-Boltzmann  constant. 
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 Figure 1:  Two street directions (left: E-W canyon,  right: N-S canyon) and pedestrian locations considered for Mean 
 Radiant Temperature calculations. 

 The  diurnal  progression  of  the  mean  radiant  temperature  computed  by  this  new  model  in  BEP-BEM  is  subsequently 

 compared  with  that  obtained  from  TUF-Pedestrian,  a  more  detailed  three-dimensional  model  that  has  been  evaluated  against 

 measurements  (Lachapelle  et  al.  2022).  TUF-Pedestrian  is  configured  with  identical  input  parameters  and  meteorological 

 forcing,  and  with  long  canyons  that  approximate  the  two-dimensional  BEP-BEM  canyon  geometry.  The  new  model  clearly 

 captures  the  relevant  details  of  the  diurnal  progression  of  MRT  at  all  six  locations  (Fig.  2),  with  a  mean  absolute  difference 

 of  3.4  K,  and  a  root  mean  square  difference  of  4.3  K  across  all  locations.  A  comparison  of  the  shortwave  radiation  loading  on 

 the  pedestrian  between  the  two  models  reveals  excellent  agreement  (Appendix  A  Fig.  A1,  A2);  thus,  most  of  the  model 

 disagreement  arises  from  differences  between  longwave  loading  on  the  pedestrian  as  a  result  of  different  methods  for 

 computation  of  surface  temperature  between  the  models.  Overall,  the  new  model  of  mean  radiation  temperature  in 

 BEP-BEM provides satisfactory results. 
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 Figure 2:  Comparison of diurnal variation of Mean  Radiant Temperature (MRT) between the new model in BEP-BEM and 

 TUF-Pedestrian for each of the six locations in Fig. 1. 

 2.2  Parameterize airflow variability in the urban canopy 

 Mesoscale  models  solve  conservation  equations  for  the  three  components  of  momentum.  From  these,  it  is  possible  to  derive 

 the  spatially  averaged  wind  velocity  in  each  grid  cell,  at  the  grid  resolution  of  the  mesoscale  model,  commonly  of  the  order 

 of  300m-1km.  The  spatially  averaged  wind  velocity  in  the  urban  canopy  ,  close  to  the  pedestrian  height  (~2.5m),  is  the  〈  𝑉  〉 

 square  root  of  the  sum  of  the  spatial  average  of  the  two  horizontal  components  u  ,  and  v  ,  (neglecting  the  vertical  component, 

 which is usually at least one or two orders of magnitude smaller than the horizontal), 

 (2)  〈  𝑉  〉 =  1 
 𝑉𝑎𝑖𝑟 

 𝑉𝑎𝑖𝑟 
∫  𝑢𝑑𝑉 ( ) 2 

+
 𝑉𝑎𝑖𝑟 
∫  𝑣𝑑𝑉 ( ) 2 

 where here  Vair  is the volume of the grid cell occupied  by air (e. g. without the buildings) 

 However,  the  wind  velocity  calculated  in  mesoscale  models  is  different  from  the  average  wind  speed  that  would  be 

 experienced  by  a  person  in  the  grid  cell.  This  is  better  represented  by  the  spatial  average  of  the  wind  speed  (e.  g.  the  〈  𝑈  〉 

 module of the vector), written as 

 (3)  〈  𝑈  〉 =  1 
 𝑉𝑎𝑖𝑟 

 𝑉𝑎𝑖𝑟 
∫  𝑢  2 +  𝑣  2  𝑑𝑉 

 To  assess  the  impact  of  airflow  on  human  thermal  comfort,  the  wind  speed  should  be  estimated  from  the  wind  velocity 

 computed  in  the  mesoscale  models.  Additionally,  it  is  critical  to  parameterize  and  estimate  the  spatial  variability  of  mean 

 wind  speed  in  the  urban  canopy.  Accounting  for  these  factors,  the  range  of  wind  speed  variability  at  the  pedestrian  level  is 

 estimated, which is critical for the quantification of spatial variability of outdoor thermal stress and comfort. 

 Here,  we  describe  the  parameterization  of  a)  wind  speed-to-velocity  ratio  and  b)  wind  speed  distribution,  based  on  urban 

 density  parameters.  Data  from  over  173  microscales  CFD  simulations  of  urban  airflow  are  considered  over  realistic  and 

 idealized  urban  configurations,  spanning  a  wide  range  of  building  plan  area  (λ  P  ),  frontal  area  (λ  F  ),  and  wall  area  (λ  w  )  densities 

 representative  of  realistic  urban  neighborhoods  in  different  types  of  cities.  CFD  simulations  are  conducted  using  162 

 large-eddy simulations (LES) and 11 Reynolds-averaged Navier–Stokes (RANS) schemes detailed in Appendix B. 

 Mean  wind  velocity  ,  speed  and  its  spatial  standard  deviation  (σ  U  )  are  computed  at  a  horizontal  cross-section  at  〈  𝑉  〉  〈  𝑈  〉 

 pedestrian  height  for  each  CFD  simulation  and  used  for  deriving  parameterizations  (Fig  3).  An  additional  data  point  is  added 

 at  λ  P  =λ  w  =0,  ensuring  that  wind  speed  is  equal  to  wind  velocity,  and  its  standard  deviation  is  set  to  zero,  for  the  non-urban 

 case. 
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 Figure  3:  Relationship  between  1-<V>/<U>  (bottom  row),  and  σ  U  /<U>  (top  row),  and  two  morphological  parameters,  λ  P  (left  column), 

 and  λ  W  (right  column)  based  on  the  CFD  simulations.  Dots  represent  the  average  of  the  value  among  all  the  simulations  that  share  the  same 

 morphological parameter, and the vertical bar indicates the standard deviation. The dashed line and the formula indicate the best fit. 

 Parameterizations  are  derived  (shown  in  Fig.  3)  for  two  density  parameters  (λ  P  =Ap/Atot,  and  λ  w  =Aw/Atot,  where  Ap  is  the 

 area  of  the  horizontal  surface  occupied  by  buildings,  or  the  roof  area,  Aw  is  the  area  of  vertical  (wall)  surfaces,  and  Atot  is 

 the  total  horizontal  area).  We  find  that  λ  w  better  predicts  mean  wind  speed  and  its  spatial  variability  at  the  pedestrian  height, 

 because  it  represents  both  horizontal  and  vertical  heterogeneities  in  the  urban  canopy.  Note  that  λ  F  has  not  been  included  in 
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 the  study,  given  the  difficulty  to  estimate  it  for  real  urban  areas,  and  to  translate  it  to  the  simplified  2D  urban  morphology 

 used  by  BEP-BEM.  In  any  case,  λ  F  is  closely  related  to  λ  w  .  Therefore,  the  following  parameterizations  are  implemented  at 

 the pedestrian height (1.8m) as a function of the wall area density λ  w 

 (4)  〈  𝑈  〉 =  〈  𝑉  〉 

 1 − 0 . 49λ 
 𝑤 

 0 . 4 

 (5) σ
 𝑈 

=  〈  𝑈  〉 ( 0 .  25λ 
 𝑤 

 0 . 55 )

 We, therefore, assign three values of wind speed in each grid cell, 

 〈  𝑠𝑝𝑒𝑒𝑑  〉 
 1 

=  𝑚𝑎𝑥 ( 0 .  01 ,  〈  𝑈  〉 ( 1 −  0 .  25λ 
 𝑤 

 0 . 55 ))

 (6)  〈  𝑠𝑝𝑒𝑒𝑑  〉 
 2 

=  〈  𝑈  〉 

 〈  𝑠𝑝𝑒𝑒𝑑  〉 
 3 

=  〈  𝑈  〉 ( 1 +  0 .  25λ 
 𝑤 

 0 . 55 )

 Note that here we consider the three values equally likely, in order to realistically span the range of possible values that the 

 wind speed can take in each grid cell. Since UTCI has been designed for 10m wind speeds, a simple log law is used to 

 rescale wind speed at 10m, before passing it to the UTCI routine. 

 2.3  Calculation of the thermal comfort index 

 To represent the subgrid spatial variability of air temperature, detailed CFD simulations are not available, so we simply used 

 a variability of 1 degree Celsius, which we consider to be a conservative estimate of the spatial variability of air temperature 

 over a spatial scale of the order of one km squared.  Therefore, for each grid cell, we have three values for air temperature: 

 𝑇𝑒𝑚𝑝 
 1 

=  𝑇𝑒𝑚𝑝 
 𝑊𝑅𝐹 

−  1 

 (7)  𝑇𝑒𝑚𝑝 
 2 

=  𝑇𝑒𝑚𝑝 
 𝑊𝑅𝐹 

 𝑇𝑒𝑚𝑝 
 3 

=  𝑇𝑒𝑚𝑝 
 𝑊𝑅𝐹 

+  1 

 Where  Temp  WRF  is the air temperature provided by WRF. 

 We  therefore  have,  for  each  urban  grid  cell,  three  values  of  wind  speed,  three  values  of  temperature,  and  six  values  of  mean 

 radiant  temperature.  No  variability  of  the  absolute  humidity  is  considered,  but  the  relative  humidity  is  computed  using  the 

 three values of air temperature. 
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 Based  on  the  variation  of  these  climate  variables,  assumed  uncorrelated,  54  possible  combinations  of  the  air  temperature, 

 mean  radiant  temperature,  and  wind  speed  values  can  be  formed.  For  each  one  of  these  combinations,  we  calculate  the 

 corresponding  SET  or  UTCI  value.  Based  on  the  resulting  distribution,  we  estimate  the  value  of  the  10th,  50th,  and  90th 

 percentile SET or UTCI for each grid square (at each output time). 

 3.  Characterization of thermal comfort in regional-scale models: Madrid case 

 To  illustrate  the  capabilities  of  the  new  scheme,  a  typical  heat  wave  day  in  the  city  of  Madrid  (Spain)  is  simulated  with  WRF. 

 Madrid  is  located  on  a  plateau  at  500-700m  above  sea  level,  in  the  middle  of  the  Iberian  Peninsula.  It  experiences  hot 

 summers,  with  frequent  heat  waves  that  are  increasingly  causing  severe  heat  stress  in  the  population,  and  it  is  therefore 

 considered  a  relevant  case  study.  Four  nested  domains  have  been  used,  with  resolutions  of  27,9,3,  and  1km  respectively.  The 

 city  morphology  (Fig.  4)  is  derived  from  high-resolution  LIDAR  data  that  covers  most  of  the  metropolitan  area  of  Madrid 

 (Martilli  et  al.,  2022)  ,  while  the  morphology  of  the  surrounding  towns  is  determined  based  on  Local  Climate  Zone  maps 

 (Brousse  et  al.,  2016)  .  It  is  also  important  to  mention  that  the  city  is  located  on  a  hilly  terrain,  with  higher  elevations  in  the 

 N-W  part  of  the  urban  area  (around  700m  a.s.l.)  dropping  to  500m  a.s.l.  or  less  in  the  S-E.  Moreover,  there  are  two 

 topographical  depressions  on  the  two  sides  of  the  city  center,  caused  by  the  rivers  Jarama  and  Manzanares  (for  a  detailed 

 description  of  the  topography  see  also  Martilli  et  al.  2022,  where  the  same  set-up  was  used).  Other  model  configurations  are 

 the  NOAH  vegetation  model  for  the  non-urban  grid  points  and  the  Bougeault  and  Lacarrere  (1989)  PBL  scheme  for 

 turbulence  parameterization.  WRF  coupled  with  BEP-BEM  has  previously  been  successfully  used  to  simulate  a  heat  wave 

 period  in  Madrid  (Salamanca  et  al.,  2012)  .  The  period  used  in  this  paper  is  three  days  (14-16  July  2015).  In  particular,  the 

 analysis  will  focus  on  the  15th,  when  the  maximum  simulated  temperature  was  above  40  Celsius.  More  information  about 

 the validation and a sensitivity study to select the optimal set-up can be found in Rodriguez-Sanchez  (2020)  . 
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 Figure 4.  Map of the plan area building density over the Madrid region. The underlying map was created with Mapbox OpenStreetMap 

 3.1 Sub-grid scale variability of MRT and thermal comfort  . 

 In  order  to  understand  how  urban  morphology  affects  the  simulated  heat  stress,  we  focus  on  two  grid  points  with  very 

 different  urban  morphology.  One  is  located  in  the  dense  core  of  the  city,  with  a  building  plan  area  density  of  λ  P  =0.69,  and  a 

 height-to-width  ratio  (H/W)  value  of  1.6.  The  second  is  located  in  the  southern  part  of  the  urban  area,  in  a  residential 

 neighborhood with a much lower building density (λ  P  =0.2) and a H/W=0.1. 

 In  Figure  5,  the  diurnal  evolution  of  the  mean  radiant  temperature  in  the  six  points  (three  per  street  direction)  is  presented  for 

 the  high  urban  density  point  and  the  low  urban  density  point.  During  the  daytime,  the  impact  of  the  shadowing  is  clear,  with 

 reduced  mean  radiant  temperature  in  the  high-density  point  compared  to  the  more  exposed  low-density.  On  the  other  hand, 

 during  nighttime,  the  reduced  sky-view  factor  in  the  high-density  point  slows  down  the  cooling  compared  to  the  more  open 

 low-density location. 
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 Figure 5.  Diurnal evolution of MRT for 6 points in  the urban canopy. The top row (white background) corresponds to a grid with the 

 highest building density in the center of Madrid (  λ  P  =0.69) while the bottom row (with grey background) shows MRT in a low-density 

 neighborhood (  λ  P  =0.19). The left column is for an  N-S street, while the right column shows an E-W street. 

 This  behavior  helps  to  explain  the  heat  stress  index  (Figure  6).  The  air  temperature  indicates  hotter  values  both  during  the 

 day  and  the  night  in  the  high  urban  density  point  compared  to  the  low-density  location.  The  Heat  Index,  which  considers  air 
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 temperature  and  humidity  only,  and  does  not  include  mean  radiant  temperature  or  wind,  shows  the  same  tendency.  On  the 

 other  hand,  the  UTCI  behavior  communicates  a  different  and  more  complete  result.  In  the  low-density  neighborhood,  more 

 exposed  to  the  sun,  the  UTCI  shows  a  stronger  sub-grid  spatial  variability,  in  particular  during  the  morning  and  afternoon, 

 with  the  potential  for  stronger  heat  stress  than  in  the  high-density  neighborhood.  During  nighttime,  the  spatial  variability  is 

 reduced,  due  to  reduced  MRT  variation  as  the  shadowing  effect  disappears,  and  higher  UTCI  values  are  found  at  the  high 

 urban  density  location.  This  difference  in  behavior  between  the  two  locations  can  be  seen  also  in  Fig.  7,  where  the  fractions 

 of  the  10th  percentile  of  UTCI  values  (i.e.  representative  of  one  of  the  coolest  spots  in  the  grid  cell)  and  the  90th  percentile 

 (i.e.,  one  of  the  hottest)  in  the  different  heat  stress  regimes  are  shown  for  the  two  points.  Here  we  can  see  that  in  the 

 low-density  urban  point,  the  cool  location  is  in  a  comfortable  UTCI  range  most  of  the  time,  while  the  hot  (90th  percentile 

 UTCI)  subgrid  location  is  under  stress  most  of  the  time.  On  the  other  hand,  less  variability  is  present  in  the  high-density 

 neighborhood,  with  fewer  extreme  values,  and  most  of  the  time  in  the  strong  or  moderate  heat  stress  regime  for  both  the  cool 

 and  hot  locations  within  the  grid  square.  This  kind  of  detail  is  not  available  from  the  Heat  index  distribution  which  does  not 

 account for the mean radiant temperature, wind, or their variabilities (Fig. 8). 
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 Figure 6.  Diurnal evolution of UTCI compared with  2-m air temperature and heat index calculated from air temperature and relative 

 humidity at each grid point). The UTCI boxplot at each hour represents the subgrid-scale distribution calculated based on 6 MRT, 3 wind 

 speeds, and 3 air temperature values (54 combinations in total). The horizontal lines represent the thermal comfort zones for UTCI (i.e. 
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 above +46C: extreme heat stress; +38 to +46: very strong heat stress; +32 to +38: strong heat stress; +26 to +32: moderate heat stress; and 

 +9 to +26: no thermal stress). 
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 Figure 7.  From top to bottom, the frequency of UTCI  class over a 24-hour period, for a subgrid location that is cooler (i.e. 10th percentile 

 of UTCI in the urban canopy, top), and for a subgrid location that is hotter (i.e. 90th percentile of UTCI in the urban canopy, bottom), for 

 the high-density (left) and low-density (right) points. 

 Figure 8.  same as Figure 7, but for the Heat Index 
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 3.2 City-scale maps of outdoor thermal comfort and  heat stress indicators. 

 The  previous  analysis  helps  to  understand  the  spatial  distribution  of  the  different  variables  presented  in  Fig.  9  at  10  and  16 

 UTC  (note  that  Madrid  is  at  Longitude  3W,  so  UTC  is  essentially  equal  to  solar  time).  The  distribution  of  2m  air  temperature 

 at  9  UTC  shows  a  hot  region  in  the  dense  city  center,  with  cooler  areas  in  the  less  dense  regions  around  it.  This  effect  is  due 

 to  the  fact  that  in  the  dense  region,  the  reduced  sky-view  factor  of  the  streets  (high  H/W),  as  well  as  the  larger  thermal 

 storage  in  the  buildings,  reduce  the  nocturnal  cooling,  and  increase  the  vertical  mixing  in  that  part  of  the  city  compared  to  the 

 surroundings.  Such  a  difference  is  still  visible  in  the  morning.  The  higher  temperatures  in  the  S-E  part  of  the  urban  area,  and 

 cool  temperatures  in  the  N-W  are  the  result  of  the  topographical  differences.  The  spatial  distribution  of  air  temperature  is 

 qualitatively  similar  to  the  spatial  distribution  of  the  10-percentile  of  UTCI  (e.  g.  the  cool  spot  in  the  grid  cell),  even  if  the 

 differences  between  the  center  and  the  surrounding  urban  areas  are  not  as  intense  as  for  2m  air  temperature.  On  the  other 

 hand,  the  90-percentile  map  (hot  spot),  shows  a  completely  different  pattern,  due  to  the  fact  that  in  the  city  center,  at  that 

 time  of  the  day,  the  whole  street  is  still  in  the  shadow,  while  in  the  surrounding,  less  dense  urban  areas  there  are  points 

 completely  exposed  to  the  sun.  As  a  comparison,  the  map  of  surface  temperature  (a  variable  often  used  to  represent  the 

 spatial  distribution  of  heat  in  cities)  as  seen  from  a  satellite,  i.e.  based  only  on  a  weighted  average  of  roof,  street,  and 

 vegetation  temperatures  (see  full  equations  in  Martilli  et  al.  2021),  does  not  show  a  clear  pattern,  and  it  is  uncorrelated  with 

 the  other  maps.  This  is  a  clear  indication  that  this  variable  should  not  be  used  for  the  assessment  of  the  heat  hazard  or  heat 

 stress in urban areas. 

 At  1600  UTC  the  air  temperature  shows  again  higher  values  in  the  city  center,  lower  in  the  urban  surroundings,  and  a 

 gradient  from  hotter  S-E  at  lower  elevations  to  cooler  N-W  at  higher  elevations  (Fig.  10).  Such  a  tendency  is  present  also  for 

 the  10th  percentile  (cool  spot),  but  with  less  variability.  The  90th  percentile  map  (hot  spot)  indicates  that  the  area  with 

 elevated  heat  stress  extends  well  beyond  the  city  center,  including  lower-density  regions  that,  even  if  they  have  lower  air 

 temperatures,  are  fully  exposed  to  the  sun.  Finally,  as  it  was  the  case  for  09000  UTC,  the  surface  temperatures  have  a  map 

 uncorrelated with neither the air temperatures nor the UTCI maps. 
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 Figure 9.  Spatial maps at 0900 UTC for 2-m air temperature  (top left), surface temperature (top right), UTCI cool spot e. g. the 10 

 percentile of UTCI captured in the urban canopy model (bottom left), and UTCI  hot spot e. g. 90 percentile of UTCI in the urban canopy 

 (bottom right).  Surface temperature is equivalent to that seen by a nadir-view satellite sensor (i.e., an area-weighted average of canopy 

 ground temperature, roof temperature, and vegetation temperature in non-urban fractions is considered). The underlying maps were created 

 with Mapbox OpenStreetMap 
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 Figure 10.  Same as Figure 9, but at 1600 UTC. 

 4.  Conclusions 
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 A  new  parameterization  to  quantify  intra-neighborhood  heat  stress  variability  in  urban  areas  using  a  mesoscale  model  is 

 presented.  This  approach  is  based  on  two  primary  developments:  1)  calculation  of  mean  radiant  temperature  at  several 

 locations  within  the  idealized  urban  morphology  used  by  the  urban  canopy  model  BEP-BEM;  and  2)  parameterization  of 

 mean  wind  speed  and  its  sub-grid  spatial  variability  as  a  function  of  the  local  urban  morphology  and  the  mean  wind  velocity 

 computed  by  the  WRF  mesoscale  model,  using  relations  developed  from  a  large  suite  of  CFD  simulations  over  a  range  of 

 realistic  and  idealized  urban  neighborhoods.  The  components  of  the  new  parameterization  have  been  validated  against 

 microscale  model  results.  From  this  approach  the  sub-grid  variability  of  a  heat  stress  index  (i.e.  UTCI  or  SET)  can  be 

 computed  for  every  grid  point,  permitting  quantification  of  the  heat  exposure  at  both  cool  and  hot  locations  within  each  grid 

 square at each time. 

 The  new  parameterization  has  been  implemented  in  the  multilayer  scheme  BEP-BEM  in  WRF  and  used  to  simulate  a 

 heatwave day over Madrid (Spain) as proof of concept. The results of this initial application demonstrate the following: 

 I.  The  new  parameterization  gives  information  that  is  more  suitable  for  the  evaluation  of  heat  stress  than  the  air 

 temperature,  being  based  on  an  index  (UTCI  or  SET)  that  also  combines  air  humidity,  wind  speed,  and  mean  radiant 

 temperature. 

 II.  The  new  parameterization  provides  substantively  more  information  than  air  temperature  alone  (or  any  other  index 

 that  does  not  account  for  the  mean  radiant  temperature).  It  provides  information  about  the  sub-grid  variability  (such 

 that  heat  stress  in  both  cool  and  hot  locations  in  each  grid  square  is  quantified).  To  our  knowledge,  this  has  never 

 been done before with a mesoscale model. 

 III.  The  results  for  the  investigated  case,  indicate  a  strong  intraurban  variability,  both  in  air  temperature  and  UTCI 

 values,  that  can  be  linked  to  the  differences  in  urban  morphology  and  elevation  above  sea  level.  The  ability  to  assess 

 the  differential  impacts  of  urban  morphology  on  heat  stress  is  key  to  the  provision  of  guidance  for  urban  planning 

 strategies that mitigate urban overheating. 

 IV.  Nadir-view  surface  temperature  (i.e.,  as  seen  from  a  satellite-mounted  remote  sensor)  is  poorly  correlated  with  both 

 air  temperature  and  UTCI  maps,  indicating  that,  despite  its  ubiquitous  use  at  present,  it  is  unlikely  to  be  an  adequate 

 metric for heat impact assessment studies. 

 Finally,  we  consider  that  this  new  development  introduces  a  new  methodology  for  deploying  mesoscale  models  to  assess 

 urban overheating mitigation strategies. 
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 Code Availability 

 The code of WRF-comfort can be obtained here: 

 https://doi.org/10.5281/zenodo.7951433 

 The results of the simulation over Madrid shown in the manuscript are stored here: 

 https://zenodo.org/record/8199017 

 Competing interests 

 The authors declare that they have no conflict of interest 
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 Appendix A.  Comparison of Short wave calculation in  BEP-BEM and TUF-pedestrian  . 

 Short  wave  radiation  is  an  essential  component  of  the  MRT.  Below  we  compare  the  short  wave  radiation  reaching  the  vertical 
 sides  of  the  segment  representing  the  human  body  computed  by  BEP-BEM  vs  those  estimated  with  the  more  detailed  model 
 TUF-pedestrian. 
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 Figure  A1.  Comparison  of  short  wave  radiation  at  the  two  sides  of  the  vertical  segment  representing  the  pedestrian  for  the 
 N-S oriented street. Solid line is the WRF, while diamonds are TUF 
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 Figure A2. Same as S1, but for a E-W oriented street 
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 Appendix B. CFD simulations for wind speed variability 

 Data  from  over  173  microscales  CFD  simulations  of  urban  airflow  are  considered  over  realistic  and  idealized  urban 

 configurations,  spanning  a  wide  range  of  building  plan  area  (λ  P  ),  frontal  area  (λ  F  ),  and  wall  area  (λ  w  )  densities  representative 

 of  realistic  urban  neighborhoods  in  different  types  of  cities.  CFD  simulations  are  conducted  using  162  large-eddy  simulations 

 (LES) and 11 Reynolds-averaged Navier–Stokes (RANS) schemes detailed in Table B.1. 

 Table B.1 Details of CFD microscale simulation cases considered in this study. Simulations are classified based on the 
 configuration (urban form) used. These classifications include  UA  (  U  niform height with  A  ligned configuration),  US 
 (  U  niform height with  S  taggered  configuration),  VA  (  V  ariable height with  A  ligned configuration),  VS  (  V  ariable  height 
 with  S  taggered  configuration),  UR  (  U  niform height  with  R  ealistic  configuration), and  VR-WD  (  V  ariable  height with 
 R  ealistic  configuration and multiple  W  ind  D  irections  considered). 

 In  the  LES  simulations,  airflow  over  idealized  and  realistic  urban  arrays  to  determine  the  model  parameters  (Nazarian  et  al., 

 2020;  Lu  et  al.,  2022,  2023)  .  Realistic  urban  layouts  are  prepared  by  rasterizing  building  footprints  from  an  open-source 
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 dataset  OpenStreetMap  using  OSM2LES  (Lu  et  al.,  2022)  .  64  realistic  urban  neighborhoods  were  obtained  assuming 

 uniform  building  height  (Table  B.1)  from  several  major  cities  such  as  Sydney  and  Melbourne  (Australia),  Barcelona  (Spain), 

 Detroit,  Los  Angeles,  and  Chicago  (United  States).  Idealized  urban  arrays  are  considered  in  aligned  and  staggered 

 arrangement  that  follows  (Coceal  et  al.,  2007)  with  varying  urban  density  (  in  [0.0625,0.64])  and  height  variability  ( λ
 𝑝 
    𝐻 

 𝑠𝑡𝑑 

 =[0m,2.8m,5.6m]).  Simulations  are  conducted  in  the  Parallelized  Large-eddy  Simulation  Model  (PALM,  version  r4554) 

 (Maronga  et  al.,  2020)  following  the  same  setup  in  (Nazarian  et  al.,  2020)  ,  which  has  validated  results  against  Direct 

 Numerical  Simulation  (Coceal  et  al.,  2007)  and  wind  tunnel  experiments  (Brown  et  al.,  2001)  .  The  computational  domain  is 

 discretized  using  the  second-order  central  differences  (Piacsek  and  Williams,  1970)  where  the  horizontal  grid  spacing  is 

 uniform  and  the  vertical  spacing  follows  the  staggered  Arakawa  C-grid.  The  minimal  storage  scheme  is  employed  in  the  time 

 integration  to  solve  the  filtered  prognostic  incompressible  Boussinesq  equations  where  the  pressure  perturbation  was 

 calculated in Poisson's equation and was solved by the FFTW scheme  (Frigo and Johnson, 1998)  . 

 The  RANS  dataset  is  derived  from  steady-state  CFD-RANS  simulations  performed  with  the  Realizable  k-  ε  turbulence 

 model  (STAR-CCM+,  Siemens)  over  realistic  urban  areas.  The  size  of  the  computational  domains  is  determined  following 

 the  best  practice  guideline  of  COST  Action  732  (Franke  et  al.,  2010)  .  The  horizontal  area  covers  around  1-1.5  km2  and  the 

 domain  top  is  at  around  8H,  being  H  the  mean  height  of  buildings.  The  resolution  of  the  irregular  polyhedral  mesh  used  in  all 

 CFD-RANS  simulations  goes  from  0.5  m  close  to  buildings  to  6  m  out  of  the  built-up  area,  which  results  in  between  3  and  8 

 million  grid  points  depending  on  the  complexity  of  the  geometry.  Inlet  vertical  profiles  for  wind  speed,  turbulent  kinetic 

 energy  (k),  and  its  dissipation  (ε),  are  established  in  neutral  atmospheric  conditions.  The  evaluation  of  the  CFD-RANS 

 simulations  was  addressed  in  previous  studies  summarized  in  Table  B2  and  more  information  is  provided  in  previous 

 publications. 
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